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An investigation is made of two-dimensional steady flow of a viscous.incompressible fluid
in the vicinity of the stagnation point of an infinite step, in flow of a subsonic free jet. The
velocity profile of the undisturbed flow far from the step takes the form of a power series
in the coordinate along the step surface. Results of numerical solution are presented.

Statement of the Problem and Basic Equations. In the coordinate system XOY, where X is directed
along the obstacle and Y normal to it, an incident stream is bounded by the two-dimensional obstacle Y = 0
with a stagnation point X =Y = 0. To analyze the flow at any other stagnation point we use the continuity
equation and the Navier—Stokes equation in the form of the vorticity transport equation [1]:
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where g is the velocity gradient at the stagnation point; » is the coefficient of kinematic viscosity; and

V¥, Vy, Q&X, Y) are the velocity components in the vortex at the physical coordinates X and Y.
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We choose the following characteristic zones in the flow field near the obstacle:

1) the undisturbed flow whose velocity v is known and given by a power series containing only even
powers of x:

U= — go {(— Dra, x%", (3)

where a,, are given coefficients determining the undisturbed flow of the free jet;

2) the inviscid zone of interaction of the flow with the obstacle, where the velocity component vy
varies linearly with the coordinate y:

Uy = — X (= 1)y (4
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3) the viscous wall layer at the obstacle, where, in analogy with the series (4), we take for vy the
expansion:

Uy = — E (_ l)na2nx2”fzu'

n=0

(5)
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Using Eq. (5), we obtain the following expression for vy from Eq. (1):
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The vorticity w and the tangential stress at the wall 7y are determined by the following power series in x:
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where Ty = T4 (X)/u8, p = pv. Taking account of Eqs. (5)-(7), the vorticity transport equation (2) can be
written as:
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By equating coefficients of the same powers of x, we obtain from Eq. (9) a system of differential
equations to determine the functions f5, which depend only on y. The number of equations is determined
by the number of terms evaluated in the above series. H is clear that as one moves away from the stagna-
tion point the number of terms should be increased. A numerical experiment shows that in analyzing the
flow near the stagnation point 4 terms of the series is sufficient for a satisfactory solution. For n = 3 the
system has the form :

aiftV + a¥fofy — a3 fi o — 2aga,fofy + 2a,a.fof, — 4a.fs -+ 24a,f, = 0,
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For solution of this system the boundary conditions to be used are:

y=0v f‘_’nzf;n:Ov

oo, Fy=1, =0 (1=0, 1,2, 3. @n

Numerical Solution. The system of equations (10), with boundary coaditions (11), was solved numeri-
cally on the BESM-4 computer by the method of successive approximations. Integration was performed by
the Runge—Kutta method with accuracy to 107°, It should be noted that the zeroth approximation gives the
well-known Himenitz solution [1] for two-dimensional flow near a stagnation point. In subsequent approxi-
mations the values of the functions determined from the previous approximations are taken as constants at
each step of integration. The latter assumption does not affect the convergence process, as was verified
by doubling the integration step size. The search for the unknown conditions at the wall, i.e., £"(0) and
f™(0), was performed by Newton's method. The functions {f' (¢)—1] and " (2) were expanding in Taylor
series in the vicinity of the roots £"(0) and f™(0) using approximate values in the Taylor series for the partial
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Fig. 1. Results of calculation of functions fy, and f3, (a): plotof1)
05 2) £55 3) f45 4) £5; 5) f55 6) £33 7) £)5 8) fy.and £y, and £y, ():
plotof1) £f; 2) f3; 3) £]; 4) fg; 5) fy; 6) fy'5 7) £]'; 8) ;.

TABLE 1. Resulis of Solution of Eq. (10) derivatives, obtained by polynomial interpolationfrom
| i the Gregory—Newton formula [2], allowing for differ-
o o ! ‘ 2 l 3 ences to fourth order. The system of algebraic equa-
1 _ i - 1 tions in £"(0) and £"(0) thus obtained was solved by an
fn O 11,2326 2,8155 2,762 i 7,7502 iterative method. For the first integration the values
@ | = —4,0041 | —6,1493 | —18,364 of £"(0) and £"(0) were assigned arbitrarily from the

expected range of the exact values.

The velocity profile V of the unperturbed jet flow was taken, from the experimental data of [3], in the

form
v _ M=)
Vi

’ (12)

where k'= 0.89; Vy, is the maximum value of the unperturbed flow at X. = 0; X ; is the distance of the
obstacle, where V = 0.5 V. In the region of interaction of the jet with the obstacle a linear law was used
for the variation of normal velocity component, i.e.,

(X e
= _.__3:% ye T ) :
where Y, is the distance from the obstacle to the boundary of the iuteraction region, where Eq. (12) is
valid.
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Introducing the velocity gradient at the stagnation point 8 = V,,,/V,, the resulting expression can be
written in dimensionless form as

Ry ) 2

—k
X,

L=y b Tos ), (13)

Comparing Eqgs. (13) and (4), we obtain

kt X )2 o
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e Yo,5 ) = 2 (— 1)*na,,x*",
n=0

whence it follows that ag =1, a, = k/x} 5, a, = k%/2x} 5, ag = k*/6x} ;, ete.

From the data in [3] for x5, the exit section in the series coefficients, we can obtain
X5 = —%‘i +0.0848Y,

where B, is the width of the nozzle exit section; Y is the distance from the nozzle exit to the section con-
sidered, corresponding to the boundary of the jet—stepinteraction region, and Y = Y~Y,,, where Y, is the
distance of the obstacle from the nozzle exit.
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Fig. 2. Distribution of longitudinal velocity and component over the
obstacle.

Fig. 3. Distribution of friction coefficient over the obstacle: 1, 2, 3)
calculation of cf using 2, 3, and 4 terms of the series, respectively
(the broken line is the calculation for uniform flow).

The calculation was carried out for the following specific data: V, = 8 m/sec, B, = 0.1 m, distance
from the nozzle exit to the obstacle Y, = 8B4, v =1,5-107% m?/sec. The velocity gradient at the stagnation
point 8 = V., /V, can be determined by solving the problem of inviscid interaction of the jet and the obstacle

“or can be evaluated from experimental data, In this analysis we used the approximation [4]:
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For the given value of 8, using the known dependence for the velocity distribution along the axis of

a free jet Vi [5], one can easily determine Yo and, therefore, the value of X, ; appearing in the series

coefficients. However, calculations show that for the free section of the jet one can assume that Y ~ Y,
in determining X ;, with a sufficient accuracy.

The results of the solution of the system (10) are shown in Fig. 1a, b and in Table 1, From the re-
sults velocity profiles along the obstacle have been constructed for a series of values of x (Fig. 2), and the
distribution of the friction coefficient at the wall cf = ZTW(X)/pr, has been given as a function of Re g*x
= Vgs0**/v, calculated in terms of the momentum loss thickness 6** (Fig. 3). Figure 3 also shows for
comparison calculated friction values for flow of a uniform stream over an obstacle; cf was calculated for
a jet with successively 2, 3, and 4 terms of the series in Eq. (12).

It follows from the data presented that the effect of a nonuniformity of the flow on the flow field near
the obstacle begins to be seen at very small distances from the stagnation point.

NOTATION
X is the coordinate along the obstacle;
Y is the direction normal to the obstacle;
By, is the width of the nozzle exit section;
Y, is the distance from the nozzle exit to the obstacle;
Vx and Vy are the velocity components along the X and Y axes, respectively;
Va is the velocity at the nozzle exit section;
Q is the degree of vorticity;
Tw is the friction stress;
cf is the coefficient of friction;
B is the velocity gradient in the vicinity of the stagnation points;
v is the kinematic viscosity;
a is the experimental constant.
Subscripts

w  at the obstacle;
m along the jet axis;
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at the nozzle exit section;
at the outer edge of the wall layer.
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